
Flexible Prefetching on GPUswith DRAGON-DIRECT
BenjaminWagley 1 Mehmet E. Belviranli 1 Pak Markthub 2 BoWu 1

1Colorado School of Mines, Department of Computer Science 2NVIDIA Japan

Background and Motivation

Managing memory in GPU accelerated workloads is a difficult task especially as dataset

sizes grow beyond available host memory on an individual system. With GPU accel-

erated systems ranging from nodes on supercomputers, to data science workstations,

working around traditional GPU memory limitations is important. On traditional GPU

memory architectures if data is larger than GPU memory, the user must process their

data in batches, adding complexity to the task. Architectures like NVIDIA’s UnifiedVirtual

Memory (UVM) allow for users to allocate GPU memory across CPU and GPU memory,

removing the limitations that data must be smaller than GPU memory. However, UVM

still limits data sizes to be smaller than the combined CPU and GPU memory on the sys-

tem.

GPU

CPU

Disk

Data is read from disk to CPU memory

Data is copied from CPU buffer to GPU buffer

(a) Traditional GPU memory Architecture

GPU

CPU

Disk

Data is read directly into CPU buffer and

implicitly copied to GPU

Pages are copied from CPU memory to GPU Pages are evicted from GPU

(b) Unified Virtual Memory Architecture

Figure 1. Architectures from NVIDIA’s standard CUDA environment

DRAGON expands on UVM by utilizing high speed NVMe storage and UVM’s page-

faulting subsystem, in an mmap-like interface that allows terabyte-scale data processing

on GPUs. This brings out-of-core processing to any CUDA application. Since DRAGON

is implemented at the driver level, it requires no changes to CUDAkernel logic. DRAGON

catches page-faults from the UVM driver, and ensures that the required page is copied

into GPU memory for use by the application. It will evict unused pages from GPU mem-

ory when more GPU memory is needed. By using CPU memory as a cache, DRAGON

can utilize basic prefetching systems such as linux’s readahead. However, it does not

allow for more complex prefetching, and bandwidth remains limited due to the fact that

pages must be copied into CPU memory before being transferred onto the GPU [1].

GPU

CPU

NVMe

Select pages from NVMe are

cached in CPU memory

Pages are copied from CPU

buffer to GPU buffer when

needed

Evicted pages on GPU are

copied to CPU buffer

Writeback keeps NVMe

updated

(a) DRAGON Memory Architecture

(b) How the DRAGON UVM Driver captures

and processes page faults

Figure 2. DRAGON Internals

A Different Data Paradigm

As a byproduct of DRAGON, data can be stored directly in binary files on the NVMe

storage, which is then mapped directly into GPU memory when reading. For commonly

read data, we can amortize dataset I/O to constant time, once the dataset is processed

into the desired form. This is similar to using mmap() on preprocessed data for I/O.

Contributions

We present DRAGON-DIRECT, a novel expansion of DRAGON that supports direct

data migration between NVMe storage and GPU memory, with a flexible

user-controlled prefetching system.

We integrate DRAGON-DIRECT into NVIDIA’s RAPIDS data science libraries.

We showcase a novel approach utilizing DRAGON-DIRECT’s prefetching system for

creation of mini-batches in machine learning workloads.

DRAGON-DIRECT

Utilizing Direct Memory Access (DMA), DRAGON-DIRECT builds on DRAGON by allow-

ing direct mapping of NVMe storage into GPU memory address space, bypassing host

memory. Like DRAGON it is implemented at the driver level and does not require mod-

ification of CUDA kernels. Pages can still be cached in CPU memory if desired. This not

only reduces overhead in transferring data from NVMe to GPU, but also allows for more

advanced user-controlled prefetching.

GPU CPU

NVMe

Pages are copied directly

into GPU memory due to

prefetching or page-faults

Pages are evicted

back onto NVMe
Pages can be cached in CPU memory

Pages can be copied from CPU cache to GPU

Pages can be evicted back to CPU cache

Figure 3. DRAGON-DIRECT Memory Architecture

Prefetching with DRAGON-DIRECT

We can see that without prefetching, DRAGON-DIRECT would perform poorly on

data larger than GPUmemory due to excessive thrashing. DRAGON-DIRECT provides

a basic prefetching interface to both CPU and GPU code that can be adapted to an

applications needs with page-level granularity. To do this, DRAGON-DIRECT provides

3 basic page-level operations:

Checking residency: This reports if a page is resident within GPU memory.

Fetch-and-pin: If a page is not in GPU memory, it will be brought into GPU

memory, and pinned (so that it cannot be evicted).

Unpin: Allows a page to then be evicted, as it is no longer needed.

Integration with RAPIDS

NVIDIA’s RAPIDS [2] is a suite of data science and analytics python libraries accelerated

with CUDA, that aim to provide similar experiences to common libraries such as pandas,

sklearn and networkx. We chose to integrate DRAGON-DIRECT into the RAPIDS suite

to showcase the flexibility inherent with integrating DRAGON-DIRECT into pre-existing

workflows, as well as to showcase DRAGON-DIRECT’s real world performance. Our

current integration lies mainly in the RMM (Rapids Memory Manager) library, and is ac-

companied by additional I/O calls within the cuDF (Data-Frame) library as well as basic

integration into the cuML (Machine Learning) library. Our integration has no changes to

existing CUDA kernels within RAPIDS – the only changes required to use DRAGON are in

CPU code.

This means that for the end user, using DRAGON in a project is as simple as:

import cudf

import rmm

#Set memory r e s o u r c e to DRAGON

rmm . mr . s e t _ cu r r en t _dev i ce_ re sou r ce (rmm . mr . DragonMemoryResource ())

Flexible, User Controlled Prefetching Accelerating Mini-Batches

The prefetching that DRAGON-DIRECT provides allows for a novel new workflow in

mini-batch creation. We modify cuML’s Mini-Batch SGD Classifier to utilize this work-

flow. This new workflow allows for easier out-of-core computation with a reduction

of processing time spent creating the mini-batches. We used DRAGON-DIRECT’s

prefetching capabilities to implement an index-based prefetcher for arrays. Our mini-

batch training algorithm can be seen in figures 4 and 5.

We can see that this algorithm allows us to create mini-batches with dataset sizes

well beyond GPU memory or even CPU memory. It has the advantage that data for

the next mini-batch is being prefetched onto the GPU while training on the current

mini-batch. Ideally, the next mini-batch will be resident in memory before it is needed,

reducing processing overhead inherent in traditional out-of-core processing.

T ← Training Dataset;

N ← Number of Mini-Batches;

M ← |T |/N ;

E ← Number of Epochs;

prefetch(X , y)← Prefetches indices y from arrayX ;

for e ∈ [0, E) do
I ← [0, |T |);
randomize(I);

m← 0 ;

//Immediately Start Prefetching First Mini-Batch;

prefetch(T , I[m, (m+ 1)×M]);
for n ∈ [0,M) do

//Copy current mini-batch into training tensor;

t← T [I[m, (m+ 1)×M]];
m← m+ 1;
//Prefetch the next mini-batch, before we start computing the current one;

prefetch(T , I[m, (m+ 1)×M]);

//Train on current mini-batch;

train(t);

end
end

Figure 4. Pseudocode for our mini-batch prefetching

(Green highlights prefetching the next mini-batch prior to training on the current mini-batch)

1 2 3 4DRAGON Array on GPU

1 2

3 4
NVMe

1’ 2’ 3’ 4’ Training Array on GPU
Select pages containing the desired

elements of the array are prefetched

into GPU memory

mini-batch data is copied into training tensor

Figure 5. Prefetching for mini-batches using DRAGON-DIRECT

Conclusion

We are still actively performing experiments, and do not currently have data to reflect

our implementations performance. We expect to see similar kernel execution time to

UVM since DRAGON-DIRECT is built into the UVM driver when optimally prefetch-

ing. We can see that DRAGON-DIRECT provides a powerful new memory system for

CUDA programs that allows for terabyte scale out-of-core processing, without requiring

changes to pre-existing kernels. DRAGON-DIRECT allows for data science workstations

and supercomputer nodes with unprecedented data scale, through mapping NVMe stor-

age into GPU memory.

References
[1] Pak Markthub, Mehmet E Belviranli, Seyong Lee, Jeffrey S Vetter, and Satoshi

Matsuoka.

Dragon: breaking gpu memory capacity limits with direct nvm access.

In SC18: International Conference for High Performance Computing, Networking, Storage

and Analysis, pages 414–426. IEEE, 2018.

[2] Nvidia rapids.

http://rapids.ai.

DRAGON:

NVIDIA RAPIDS:

https://github.com/pakmarkthub/dragon
http://rapids.ai

