
Context-aware Multi-Model Object Detection for
Diversely Heterogeneous Compute Systems

Justin Davis
Computer Science

Colorado School of Mines
jcdavis@mines.edu

Mehmet E. Belviranli
Computer Science

Colorado School of Mines
belviranli@mines.edu

Abstract—In recent years, deep neural networks (DNNs) have
gained widespread adoption for continuous mobile object detec-
tion (OD) tasks, particularly in autonomous systems. However,
a prevalent issue in their deployment is the one-size-fits-all ap-
proach, where a single DNN is used, resulting in inefficient utiliza-
tion of computational resources. This inefficiency is particularly
detrimental in energy-constrained systems, as it degrades overall
system efficiency. We identify that, the contextual information
embedded in the input data stream (e.g., the frames in the camera
feed that the OD models are run on) could be exploited to allow
a more efficient multi-model-based OD process. In this paper,
we propose SHIFT which continuously selects from a variety of
DNN-based OD models depending on the dynamically changing
contextual information and computational constraints. During this
selection, SHIFT uniquely considers multi-accelerator execution
to better optimize the energy-efficiency while satisfying the latency
constraints. Our proposed methodology results in improvements
of up to 7.5x in energy usage and 2.8x in latency compared to
state-of-the-art GPU-based single model OD approaches.

Index Terms—accelerator, autonomous, context-aware, object
detection, gpu, heterogeneous

I. INTRODUCTION

Modern autonomous systems employ deep neural networks
(DNN) for various tasks and all-in-one system-on-chips
(SoC) to enable decision making on-the-go without human
intervention. Typically, such autonomous systems are equipped
with SoCs featuring graphical processing units (GPU) for
the execution of DNNs. A common and critical autonomous
task is object detection (OD) which identifies objects of
interest in the environment, captured by the stream of images
obtained by the camera. A common practice employed by
system developers is to select and configure a single DNN,
such as YoloV7 [1], and map it to the fastest processor in the
SoC, which is typically a GPU. In this conventional setup,
there is limited room for improving the latency and/or energy
usage of the autonomous system, as the model and the target
processing unit is fixed. In response, several studies [2], [3]
propose offloading the computation to a remote server, while
others [4]–[6] attempt to reduce the computational demand
by modifying the underlying model or using a subset of the
data stream. However, offloading is not a viable option due to
the latency overhead associated with remote processing. On
the other hand, modifying models or selectively skipping data
often results in a significant compromise in accuracy. Instead,
in this work, we explore optimizing the system performance
by employing a context-aware multi-model execution and
leveraging different type of accelerators available in SoCs.

Fig. 1: Comparison of (a) single-model with multiple parameter sizes
on the left against (b) multi-model object detection architectures on
the right. The larger the value along each axis the better: a perfect
model would be largest triangle across all axes.

Modern SoCs often embed neural network (NN) accelerators
alongside with GPUs to perform low-power DNN inference.
For example, the Nvidia DLA in the Jetson Xavier series allows
DNN inference with up to 2.5x energy savings compared to the
GPU in the same SoC, at the cost of 2x slower latency. Another
accelerator, the RCV2 on the OAK-D from Luxonis, provides
4 TOPs of computation at 5 Watts, surpassing GPU energy effi-
ciency. Having different types of DNN accelerators in the sys-
tem enables a tunable trade-off between latency and energy [7].

A common approach to save energy and reduce computa-
tional demands in the OD process is to quantize a given object
detection model (ODM) and create less accurate but more
energy and performance efficient versions of the same model
[8]. While this method allows for the execution of state-of-the-
art models on performance-limited SoCs, efficiency-related op-
timizations are constrained due to the entire OD process being
confined to a single DNN model. A more comprehensive and

Fig. 2: Single model object detection efficiency on GPU for commonly
used DNNs and their variations on a test set for continuous detection
and tracking of an aerial drone. Efficiency is quantified by intersection
over union (IoU) per Joule of energy (see Sec. IV for details).

ar
X

iv
:2

40
2.

07
41

5v
1 

 [
cs

.L
G

] 
 1

2 
Fe

b 
20

24



Model IoU Inference (s) Power (W) Energy (J)
CPU GPU DLA CPU GPU DLA CPU GPU DLA

YoloV7 0.62 1.65 0.13 0.12 7.60 15.1 15.1 20.5 1.97 1.78
YoloV7Tiny 0.53 0.38 0.03 0.02 7.20 11.2 11.2 4.19 0.28 0.27
MobilenetV1 0.45 - 0.09 0.09 - 16.2 6.10 - 1.52 0.56

TABLE I: Average statistics for two architectures of object detection
models and their performance on CPU, GPU, and GPU/DLA.

flexible way to further increase energy savings is to dynamically
switch to simpler, less compute demanding ODMs if their de-
tection accuracy is sufficient for the changing (i.e., contextual)
characteristics of the captured frames. For example, if the target
object being detected is in front of a solid, contrasted back-
ground within a close distance, then both simple and advanced
models perform equally well. Fig. 2 demonstrates this contex-
tual change by depicting the timeline of varying accuracies that
different ODMs exhibit on one of our test sets (see Sec. V for
details). Through optimal utilization of all available heteroge-
neous models, we observed enhancements in accuracy by 3%,
latency by 5.2x, and energy usage by 13.6x, or a combination
thereof. We illustrate the three-way energy-accuracy-latency (e-
a-l) relationship between the standard YOLOv7 model [1] and
other simpler model families in Fig. 1. While smaller variations
of YOLOv7 (Fig. 1.a) result in a monotonic decrease of energy
and latency; the use of different type of ODMs (Fig. 1.b)
exhibits a non-monotonically changing relationship between
the three metrics. Detailed statistics on the e-a-l trade-off for
different accelerators and the CPU could be found in Table I.

By leveraging the optimization potential offered by multi-
accelerator systems and multi-model object detection, there
exists an opportunity to enhance accuracy, reduce latency, and
conserve energy in real-time operations within autonomous
systems. However, creating such an OD scheme presents several
challenges: (i) Models need to be characterized in advance
to determine their performance and energy characteristics. (ii)
Since the accuracy of each model depends on the dynamic
context, predicting accuracies without running them for every
encountered frame is not trivial. (iii) Not all models considered
by the system can be simultaneously loaded into memory due
to limitations in available resources.

In this paper, we present SHIFT to enable energy and latency
efficient multi-model and multi-accelerator object detection for
autonomous systems. This approach takes into consideration the
changing contextual features of the input frames, accelerators in
the system, and ODMs with different execution characteristics.
Our contributions are as follows:

• We build a unique graph-based mechanism, named confi-
dence graphs, that is used to rapidly predict the changing
accuracy of different ODMs during runtime.

• We create a novel scheduler that can adapt to specific system
constraints by targeting model accuracy, latency, or energy
consumption, based on real-time contextual information de-
rived from the input stream of frames. This scheduler decides
the ODM and accelerator to run such that system objectives
are achieved under given constraints.

• We deploy a dynamic model loading mechanism that is ca-
pable of managing memory resources for each ODM and

Feature

Related Work

G
lim

ps
e

[2
]

M
A

R
L

IN
[5

]

A
da

V
P

[4
]

R
oa

D
-R

uN
N

er
[9

]

Fa
st

U
Q

[1
0]

H
er

al
d

[1
1]

A
xo

N
N

[7
]

SH
IF

T

Context Awareness ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓

Multi-Accelerator ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Multi-DNN ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓

Energy-Aware ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

No-Offloading ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Continuous ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓

TABLE II: Comparison of the features offered by related works.
facilitates switching between ODMs when necessary.

• We evaluate the utility and efficiency of SHIFT on three
unique off-the-shelf accelerators designed for autonomous
systems. We show that our proposed methodology results in
improvements of up to 7.5x in energy usage and 2.8x in la-
tency compared to GPU-based single model OD approaches.

II. RELATED WORK

The related work could be categorized as follows:
Continous Detection: Glimpse [2], RoaD-RuNNer [9], and

FlexPatch [3] propose using an edge-server computational setup
to decrease latency and reduce energy by using techniques such
as edge level object tracking, edge/server model partitioning
and selective tracking, respecitvely. However, such approaches
rely on stable connections to servers, and none of them
consider the use of multiple accelerators or multiple DNN
models. Marlin [5], and AvaVP [4] are studies which aim to
reduce the energy usage onboard a mobile device doing OD.
Marlin [5] proposes an approach where, instead of running the
DNN every frame, the system alternates between a tracking
algorithm and DNN. AvaVP [4] extends Marlin [5] by varying
the input size of the DNN and skipping frames to adjust the e-
a-l trade-off during runtime.better latency per frame compared
to other onboard-only schemes. Neither considers the benefit
of employing multiple DNN models or utilizing accelerators
other than a GPU.

DNN Inference on Multi-Accelerator Systems: Inference
on multi-accelerator systems is an active research area with sev-
eral recent studies being published [7], [11]–[16]. Herald [11]
and AxoNN [7] generate optimized schedules for performing
inference with a single DNN on a system using a layer-by-
layer mapping scheme. NeuLens [12] and Band [13] reduce
DNN inference time by splitting a DNN into subgraphs for
processing. Deepmon [14] and CoDL [15] optimize latency on
mobile execution by scheduling layers on both CPU and GPU.
While these solutions consider latency and energy constraints,
neither of them considers using multiple, different types of
DNN models for OD in a context-aware manner.

Multi Model Detection: Fast UQ [10] uses different types of
DNN architectures to extract more accurate poses in 3D space.
They identify that combining multiple DNNs with domain spe-
cific metrics could lead to significant accuracy improvements.

A feature comparison between the most relevant related work
and our approach can be found in Table II. SHIFT is uniquely
able to handle context-aware, continuous multi-model (i.e.,
multi-DNN) OD across multiple accelerators while satisfying
energy, latency and accuracy constraints.



III. METHODOLOGY

SHIFT is composed of three primary components: (a) We
first characterize the target set of ODMs by determining their
core traits for each available accelerator and build a confidence
graph to enable fast accuracy prediction at runtime. (b) Then,
our multi-model, multi-accelerator scheduler is responsible for
determining the current best ODM to run, for each incoming
frame. The scheduler uses the traits identified in the characteri-
zation process and the confidence graph, and selects the model
for the next frame that most effectively meets accuracy, energy
and latency constraints. (c) Finally, our scheduler employs a
dynamic model loader that utilizes characterization data and
runtime memory footprint measurements to determine where to
allocate models and, if necessary, which models to deallocate.
A. Object Detection Model Characterization

The latency, energy consumption, and detection accuracy
of OD in an autonomous system depend on traits varying by
the ODM, frame-context, and target accelerators. To select the
best model for each frame encountered at runtime, we need
to continously predict the accuracy of the ODMs at hand.
However, this is not trivial unless each ODM is run everytime
the frame-context changes, which is a very costly approach.
To address this problem, we build a two-step approach where
we first (1) perform an offline characterization of ODMs
into a discrete set of traits and then, (2) using these traits,
we construct a confidence graph which will later be used by
the runtime to predict the accuracy of a model. Notably, our
approach for model characterization and graph construction
is generic in nature. It relies solely on a testing or validation
subset of the dataset used for training the models.

ODM Trait Identification: For each ODM, we collect the
following traits: (i) Accuracy is characterized by running the
ODM on the testing data set and, for each frame, computing
the intersection over union (IoU) between the bounding boxes
of the detected object and labeled ground truth. (ii) Confidence
score represents an internal accuracy assessment of the
underlying DNN and can be used for quickly acquiring a per-
formance estimate. However, these scores can be influenced by
over-fitting and sometimes they are ‘over-confident’; therefore,
they are not consistent across different ODM architectures.
(iii) Latency of an ODM is found by measuring the execution
time of the model on each target accelerator. (iv) Energy is
characterized by measuring the time×power draw across all
power rails during execution with a given model. (v) Model
loading cost needs to be accounted for as part of multi-model
execution overhead. This cost includes the memory footprint,
time to load the model, and energy draw during this time.

Confidence Graph Creation: For a given frame, the confi-
dence scores reported from multiple types of ODMs vary, while
versions of the same ODM produce similar scores. Correlating
the scores between different types is essential for accurate pre-
dictions, since we cannot run each model type on each frame
due to energy, latency, and memory constraints.

To quickly predict the accuracy of ODMs on the fly, we
construct a novel confidence graph (CG) as follows:

1) Each node represents a discrete confidence score range
of an ODM and its expected accuracy (e.g., we create a node,

YoloV7-(0.5-0.6), to represent YoloV7’s performance in
the confidence score range of 0.5 to 0.6).

2) To find edges, we run each ODM on a testing/validation
dataset. For each image in the dataset, we locate the nodes for
each ODM’s confidence score range on that image and create
edges between them. For example, for a given image, if YoloV7
resulted in a conf. score of 0.53 and MobileNet results in
0.42, we create an edge between the two corresponding nodes:
YoloV7-(0.5-0.6) and MobileNet-(0.4-0.5). If an
edge already exists, we increment its weight by 1.

3) We then normalize all edges to have a weight w between
0 and 1 and invert weights so that two highly connected nodes
will have a lower cost when traversed. The normalization is
performed within the edges directly connecting a single node,
such that global maximums will not take over.

4) Next we run a breadth first search starting at all nodes
in the graph, to get the set of neighbor nodes which have a
distance less than or equal to a given distance threshold.

5) Since a given set of neighbors can contain multiple nodes
representing the same model, said nodes are consolidated by
taking a weighted average of each node’s expected accuracy
by the distance to traverse to said node.

6) We then store all results from the CG in a map where
each node is a key to the accuracy predictions of its neighbors.

In summary, our proposed CG structure generates a map that
transforms the confidence score of a single ODM into accuracy
predictions for all ODMs. Instead of relying on costly classi-
fiers, an ensemble, or less expensive predictors employed by
similar works [4], [5], we can execute a map lookup at runtime.
B. SHIFT Scheduler

The SHIFT scheduler is designed to perform the decision-
making process at runtime, leveraging contextual information
from both model runtime behavior and the input data stream
(i.e., frames). Our scheduler can make fast decisions with
minimal computational overhead by utilizing the CG and the
analysis of frames using computationally efficient metrics. As
a result, the scheduler maintains an overhead of less than 2
milliseconds per frame. The scheduler operation can be delin-
eated into two fundamental components: context detection, and
a heuristic algorithm for selecting appropriate models.

Context Detection: SHIFT scheduler relies on input frames
to detect the changes in the context, so that the proper ODM
could be employed. While the CG lets us rapidly predict the
accuracy of an ODM by deriving information from confidence
scores reported by DNNs, these scores are intrinsically linked
to model error [17] and may not be reliable when the input data
is further outside the scope of the training data than the testing
set. The frame context also plays a crucial role in predicting
the accuracy of an ODM [18]. Extracting a comprehensive
range of context from these images is computationally expen-
sive and not viable for real-time processing on edge devices.
Instead, the SHIFT scheduler assesses frame similarity using
the normalized cross-correlation (NCC) between consecutive
bounding box results and image frames:

NCC(p, c) =
∑

(p−mean(p))(c−mean(c))

(
√∑

(c−mean(c))2 ×
√∑

(p−mean(p))2
(1)



where p and c are grayscale images of the same size repre-
senting the previous and current frames in an input stream.
By employing NCC, the scheduler can identify when the input
stream has changed significantly, prompting re-scheduling of
the current ODM. This can aid in identifying when the current
ODM may incorrectly continue to report high confidence scores
despite objects not being present or easily detectable.

Scheduling Heuristic: Algorithm 1 describes the SHIFT
scheduler which utilizes a heuristic to assign weights to
schedulable models. The scheduler takes the current ODM m,
conf. score c, input frame i and bounding box b as input and
returns the highest scoring model as output. The energy and
latency characteristics of available models are pre-determined,
normalized to a 0 to 1 range, and inverted for bigger-is-better
performance indication (lines 6, 7). At runtime, the scheduler
invokes the confidence graph to estimate model accuracies
for the most recent frame (line 9). The scheduler averages
accuracy predictions for all models and aggregates those
meeting the desired accuracy threshold (lines 11-15). In the
absence of models meeting the threshold, all available models
are considered valid (lines 16-17). Post model selection,
weights are assigned based on user-defined parameters, and the
best model is outputted (lines 19-24). As energy and latency
are converted to bigger-is-better metrics, maximum search of
candidate models suffices for optimal selection.

The image similarity score is computed as the minimum of
the NCC between the last two images and the NCC across
the last two bounding box detections. This score determines
whether the scheduler should initiate the selection of a new
model/accelerator pair. The metric is then multiplied by the
current model confidence to facilitate scheduling during periods
when the existing ODM may exhibit unstable detections. By
reserving the scheduling of new models for instances charac-
terized by rapid changes in the overall image context, bound-
ing box, or a reduction in model confidence, the overall cost
incurred by model swapping can be minimized.
C. Dynamic Model Loader

Every model which can be executed has profiling information
available about the process of loading the model into memory.
When there is a scheduling decision and a new model is re-
quested to be loaded into memory, the dynamic model loader
(DML) will query the system’s available memory. The DML
will attempt to occupy the entire memory with ODMs, if it is
able to. This reduces the costly switching between ODMs and
improves the performance by enabling quicker model swap-
ping. The DML is able to differentiate between accelerators
and will allocate to them separately. When replacing models
the DML will replace the model which was least recently
requested. Since accelerators do not all share the same mem-
ory, the DML needs to have the knowledge about whether an
accelerator can execute a specific ODM.

IV. EXPERIMENTAL SETUP

Hardware and Accelerators: We performed our
experiments on Nvidia Xavier NX SoC, a commonly used
platform for aerial autonomous vehicles, and a Luxonis OAK-
D Lite, a stereo camera with DNN execution capability.

Algorithm 1 Model Scheduling

1: procedure SHIFT SCHEDULE(m, c, i, b)
2: s = min(NCC(lastImage, i),NCC(lastBbox, b))
3: if s× c ≥ accuracyThreshold then
4: return m
5: end if
6: E = scheduler.energy ▷ 0 → 1 model energy
7: L = scheduler.latency ▷ 0 → 1 model latency
8: W = scheduler.weights ▷ Tuned knobs
9: C = graphPredict(m, c) ▷ set of (name, acc, dist)

10: R, scores = map(),map()
11: for (n, a, d) ∈ C do
12: a.Buffer.append(a)
13: R[n] = average(a.Buffer)
14: end for
15: V = {n | n ∈ R,n ≥ accuracyThreshold }
16: if length(V ) == 0 then
17: V = R
18: end if
19: for n ∈ R.keys() do
20: s = R[n] ∗W [0] + E[n] ∗W [1] + L[n] ∗W [2]
21: scores[n] = s
22: end for
23: return max(scores)
24: end procedure

The platform includes a CPU, GPU, 2 DLAs, and an OAK-
D for DNN execution. Due to model layer incompatibility,
limitations on model size, and support constraints in libraries,
the DLA and OAK-D do not support some layers and models
we use in our experiments.

Dataset: We train the ODMs with a dataset focused on
the detection of unmanned autonomous vehicles (UAVs) [19],
which comprises a training set of 50,000 images and a valida-
tion set of 2,500 images. Each image contains at most a single
UAV, hence all implementation and evaluation are within the
context of a single-class, single-object detection problem.

Model Training: YoloV7 [1] based models were trained
using the training scripts and pipelines provided by the authors.
All YoloV7 models use an IoU threshold of 0.5 and a con-
fidence threshold of 0.35 in non-maximum-suppression. Mo-
bileNetV1 , MobileNetV2 , and Resnet50 were trained with the
single-shot detector methodology. These models were trained
using the Tensorflow object detection API. All models use an
input size of 640x640 unless otherwise stated.

Method Evaluation & Comparison: Comprehensive as-
sessments were conducted across various standalone ODMs,
considering their compatibility with distinct accelerators. Our
analysis includes a comparative analysis with Marlin [5], rec-
ognized for its energy-efficient executions on mobile devices.

To test all methods’ ability to handle real-life challenges we
created a custom evaluation dataset consisting of six scenarios
as a set of videos, each comprising between 500 to 2,500
frames. The videos have two indoor and four outdoor scenar-
ios where the targeted UAV is at different distances from the
camera with varying backgrounds and positioning in the frame.

All models on the GPU/DLA were executed using TensorRT.
OpenVINO was used to compile models for the OAK-D. All
GPU layers for models were executed in FP32 due to severe
accuracy degradation during quantization with TensorRT for



Fig. 3: Scenario 1: Drone navigates across multiple backgrounds at
varying distances from the camera.

YoloV7 models. To establish a performance ceiling, an Oracle
methodology was created. This Oracle identifies all models
surpassing a 0.5 intersection-over-union (IoU) threshold, sub-
sequently selecting the one that optimizes the targeted metric.
In cases where no models meet the IoU criterion, selection is
solely based on metric optimization. Since the Oracle methods
represents a maximum performance, it assumes that all models
are loaded into memory and thus have no cost to switch. The
choice of a 0.5 IoU threshold aligns with the common practice
of using a 0.5 threshold as the minimum when evaluating object
detection models [1]. Additionally, we define the metric success
rate as the percentage of frames which have an IoU ≥ 0.5.
Since the testing videos contain a single UAV, the average IoU
effectively captures all relevant accuracy information.

V. EVALUATION
A. Main results

The detailed traits from the characterization of all ODMs we
employ are given in Table IV. Table III presents the overall
results of our experiments, by giving a comparison between
average accuracy, latency and energy obtained by Marlin [5],
SHIFT and Oracle executions. Additionally, Figures 3 and 4 il-
lustrate the accompanying timelines and frame context changes
for two of the videos contributing to Table III.

Overall averages given in Table III show that SHIFT con-
sistently achieves a success rate surpassing all single-model
executions except the top-performing YoloV7 model. Uniquely,
SHIFT manages to uphold energy and latency efficiency su-
perior to Marlin and all single-model runs while consistently
maintaining desired accuracy ranges. Notably, SHIFT outper-
forms the state-of-the-art method Marlin irrespective of the
underlying ODM which Marlin utilizes.

In the first scenario, which is given in Figure 3, the UAV
executes maneuvers across intricate backgrounds distant from
the camera before returning. A proficient dynamic system must
adeptly identify crucial context changes, as evidenced by sharp
fluctuations in model efficiency values. SHIFT successfully rec-
ognizes all context changes, implementing transitions to more
resource-intensive ODMs at frame markers ∼ 500 and ∼ 1100.
Simultaneously, it strategically conserves resources by transi-
tioning at frames ∼ 50 and ∼ 1650. The unique capability of
SHIFT to augment resource usage during challenging or simple

Fig. 4: Scenario 2: Drone navigates across multiple backgrounds at a
fixed distance.

inputs contributes to its superiority over solutions like Marlin.
Importantly, SHIFT can conservatively allocate resources dur-
ing periods without valid detections.

In the second scenario given in Figure 4, the UAV moves hor-
izontally across simpler backgrounds while gradually moving
across the camera’s perspective. Analogous to the first scenario,
we observe abrupt drops in ODM accuracy, and thus efficiency,
when the UAV is between backgrounds. Notably, SHIFT suc-
cessfully identifies when the UAV enters the camera view,
prompting model swaps to enhance efficiency. The discernable
delay in SHIFT’s response compared to Marlin and the Oracles
is attributed to its reactionary model swapping. It is noted that
SHIFT did not detect the UAV beyond frame ∼ 450 due to
confidence scores of the current ODM indicating no UAV.

From Table III, SHIFT utilizes fewer ODM-accelerator pairs
than the Oracle methods while still maintaining higher effi-
ciency than previous state-of-the-art Marlin [5]. Despite higher
utilization of heterogeneous resources compared to the Oracles,
SHIFT loads less models into memory and uses fewer swaps
between ODMs or accelerators. For scenario 1 (pictured in
Figure 3), SHIFT only loaded ODMs which were smaller than
YoloV7; hence showcasing SHIFT’s preference for efficient
inference via the tunable weights.

Overall, we observe that SHIFT is able to successfully opti-
mize across energy and latency while swapping ODMs during
runtime based on contextual information from the input stream
in all real-world scenarios evaluated.

Methodology IoU Time
(s)

Energy
(J)

Success
Rate

Non-
GPU

Model
Swaps

Pairs
Used

Marlin 0.614 0.132 1.201 74.0% 0% 0 1
Marlin Tiny 0.529 0.036 0.33 64.0% 0% 0 1
SHIFT 0.598 0.047 0.262 72.2% 68.7% 42 4.3
Oracle E 0.535 0.025 0.144 76.0% 31.5% 94 6.7
Oracle A 0.657 0.108 1.423 76.0% 44.9% 409 12.3
Oracle L 0.522 0.025 0.169 76.0% 11.3% 112 6.8

TABLE III: Average runtime performance of continuous object detec-
tion with SHIFT. SHIFT parameters: goal accuracy 0.25, momentum
30, distance threshold 0.5, knobs: accuracy 1.0, and energy/latency 0.5.
Goal accuracy reduced from 0.5, based on observation from Figure 5.
Pairs are model accelerator pairs, a total of 18 combinations were
possible. Includes overhead for SHIFT and Marlin methods.



Model Name Accuracy Avg. Time (s) Avg. Energy (Joules) Avg. Power Draw (W)
Avg. IoU Success Rate GPU GPU/DLA OAK-D GPU GPU/DLA OAK-D GPU GPU/DLA OAK-D

YoloV7-E6E 0.564 65.8% 0.255 0.221 - 3.947 1.228 - 15.48 5.56 -
YoloV7-X 0.593 71.1% 0.222 0.195 - 3.586 1.088 - 16.15 5.57 -
YoloV7 0.618 74.1% 0.130 0.118 0.894 1.968 0.656 1.391 15.14 5.56 1.56
YoloV7-Tiny 0.533 64.0% 0.025 0.024 0.107 0.280 0.134 0.206 11.2 5.58 1.93
SSD Resnet50 0.480 58.9% 0.151 0.138 - 2.504 0.816 - 16.58 5.91 -
SSD MobilenetV1 0.452 55.4% 0.094 0.092 - 1.519 0.561 - 16.16 6.10 -
SSD MobilenetV2 0.401 51.3% 0.023 0.058 - 0.248 0.307 - 10.78 5.29 -
SSD MobilenetV2 320x320 0.304 36.2% 0.009 0.023 - 0.046 0.100 - 5.11 4.35 -

TABLE IV: Collected accuracy and performance traits of all models.

B. Sensitivity analysis
We performed a sensitivity analysis on SHIFT to ascertain

the robustness of system performance against variations in in-
put parameters. A total of 1860 parameter configurations were
tested. The outcomes of this analysis are depicted in Figure 5.
The analysis indicates that the system’s performance conforms
to expectations with respect to all knob parameters. By in-
creasing the value of the energy or latency knob, we observe
a negative correlation with the actual ODM’s energy and la-
tency as expected. Conversely, the accuracy knob has a positive
correlation since more expensive ODMs are more accurate.
The accuracy threshold parameter inversely affects all primary
metrics; this is because when SHIFT fails to find any models
meeting the goal accuracy it defaults to optimization based
on the knob settings alone. We observe that ODM accuracy
is underestimated and lowering the accuracy goal for runtime
improves efficiency. The momentum parameter, indicative of
the number of frames over which to average the predicted
accuracy of a given ODM, exhibits minor correlation with the
performance metrics, suggesting that frame-to-frame results are
inherently stable. Additionally, the distance threshold parame-
ter has a distinct correlation with reducing the average ODM
latency, due to more ODMs being considered at runtime.

VI. CONCLUSION

We introduce SHIFT, capable of dynamically switching be-
tween heterogeneous DNNs and target hardware based on
continuous input stream context. SHIFT facilitates multi-
model swaps for accuracy, energy, and latency trade-offs,
leveraging multiple accelerators. Experimental results demon-
strate SHIFT’s effectiveness, showing significant improve-
ments. Compared to a state-of-the-art ODM on GPU, SHIFT
achieves up to a 2.8x reduction in latency and a 7.5x decrease
in energy consumption, with only a modest 0.97x reduction
in successful frames and 0.97x reduction in average IoU. No-

Fig. 5: Sensitivity analysis of the SHIFT parameters against the mean
accuracy, energy, and latency values.

tably, SHIFT maintains performance without inter-frame object
tracking or skipping input frames.

ACKNOWLEDGEMENTS
This material is based upon work supported by the National

Science Foundation (NSF) under Grants No. CCF-2124010 and
CHE-2235143. Any opinions, findings, or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF.

REFERENCES
[1] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable

bag-of-freebies sets new state-of-the-art for real-time object detectors,”
in CVPR’23.

[2] T. Y.-H. Chen, L. Ravindranath, S. Deng, and et al., “Glimpse: Continu-
ous, real-time object recognition on mobile devices,” in SenSys’15.

[3] K. Yang, J. Yi, K. Lee, and Y. Lee, “Flexpatch: Fast and accurate object
detection for on-device high-resolution live video analytics,” in INFO-
COM’22.

[4] M. Liu, X. Ding, and W. Du, “Continuous, real-time object detection on
mobile devices without offloading,” in ICDCS’20.

[5] K. Apicharttrisorn, X. Ran, J. Chen, and et al., “Frugal following: Power
thrifty object detection and tracking for mobile augmented reality,” in
SenSys’19.

[6] M. Adnan Arefeen, S. Tabassum Nimi, and M. Yusuf Sarwar Uddin,
“Framehopper: Selective processing of video frames in detection-driven
real-time video analytics,” in DCOSS’22.

[7] I. Dagli, A. Cieslewicz, J. McClurg, and M. E. Belviranli, “Axonn:
Energy-aware execution of neural network inference on multi-accelerator
heterogeneous socs,” in DAC’22.

[8] A. Gholami, S. Kim, Z. Dong, and et al., “A survey of quantization
methods for efficient neural network inference,” Low-Power Computer
Vision, 2021.

[9] A. K. Kakolyris, M. Katsaragakis, D. Masouros, and D. Soudris, “Road-
runner: Collaborative dnn partitioning and offloading on heterogeneous
edge systems,” in DATE’23.

[10] G. Shi, Y. Zhu, J. Tremblay, and et al., “Fast uncertainty quantification
for deep object pose estimation,” in ICRA’21.

[11] H. Kwon, L. Lai, M. Pellauer, and et al., “Heterogeneous dataflow accel-
erators for multi-dnn workloads,” in HPCA’21.

[12] X. Hou, Y. Guan, and T. Han, “Neulens: Spatial-based dynamic acceler-
ation of convolutional neural networks on edge,” in MobiCom ’22.

[13] J. S. Jeong, J. Lee, D. Kim, C. Jeon, C. Jeong, Y. Lee, and B.-G.
Chun, “Band: Coordinated multi-dnn inference on heterogeneous mobile
processors,” in MobiSys’22.

[14] L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile gpu-based deep
learning framework for continuous vision applications,” in MobiSys’17.

[15] F. Jia, D. Zhang, T. Cao, S. Jiang, Y. Liu, J. Ren, and Y. Zhang, “Codl:
Efficient cpu-gpu co-execution for deep learning inference on mobile
devices,” in MobiSys ’22.

[16] B. Fang, X. Zeng, and M. Zhang, “Nestdnn: Resource-aware multi-tenant
on-device deep learning for continuous mobile vision,” in MobiCom’18.

[17] A. Loquercio, M. Segu, and D. Scaramuzza, “A general framework for
uncertainty estimation in deep learning,” IEEE Robotics and Automation
Letters, 2020.

[18] M. Raghu, K. Blumer, R. Sayres, Z. Obermeyer, R. Kleinberg, S. Mul-
lainathan, and J. Kleinberg, “Direct uncertainty prediction for medical
second opinions,” in ICML’19.

[19] M. L. Pawelczyk and M. Wojtyra, “Real world object detection dataset
for quadcopter unmanned aerial vehicle detection,” IEEE Access, 2020.


	Introduction
	Related Work
	Methodology
	Object Detection Model Characterization
	SHIFT Scheduler
	Dynamic Model Loader

	Experimental Setup
	Evaluation
	Main results
	Sensitivity analysis

	Conclusion
	References

