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Abstract
The energy and latency demands of critical workload execution,

such as object detection, in embedded systems vary based on the
physical system state and other external factors. Many recent mo-
bile and autonomous system-on-chips embed a diverse range of
accelerators with unique power and performance characteristics.
The execution flow of the critical workloads can be adjusted to span
multiple accelerators so that the trade-off between performance
and energy fits to the dynamically changing physical factors.

In this study, we propose running neural network (NN) infer-
ence on multiple accelerators. Our goal is to provide an energy-
performance trade-off by distributing layers in the NN between
a performance- and a power-efficient accelerator. We first pro-
vide an empirical modeling methodology to characterize execution
and inter-layer transition times. We then find an optimal layer-
to-accelerator mapping, by representing the trade-off as a linear
programming optimization constraint. We evaluate our approach
on the NVIDIA Xavier AGX System-on-Chip with commonly used
NNmodels. We use the Z3 SMT solver to find schedules for different
energy consumption targets, with up to 98% prediction accuracy.

1 Introduction
Computing devices are becoming highly heterogeneous with the

increased utilization of domain specific accelerators (DSAs), each
of which is optimized to perform a specific type of operation. This
trend is fueled by the need to run applications that span a diverse set
of computations for emerging fields such as artificial intelligence,
machine learning, autonomous systems, and smart/connected com-
munities. The latest generation of system-on-chips (SoC)—such as
NVIDIA’s Xavier architecture, Apple’s M1 and A15 Bionic chip, and
Qualcomm’s Snapdragon 888 SoC—have dramatically increased the
degree of architectural heterogeneity within the same die. In such
systems, dozens of DSAs with diverse instruction set architectures
(ISAs) work together to accelerate operations (i.e., kernels or tasks
in an application) that belong to emerging application domains.

In diversely heterogeneous SoCs, an operation (OP) can often be
accelerated via different DSAs with varying performance, energy,
and latency characteristics. For example, a convolution operation
can be set to run on the CPU, GPU, programmable vision accel-
erator (PVA), or deep learning accelerator (DLA). The DSA that
would provide the optimal execution time and/or energy efficiency
for the operation depends both on the DSA capabilities, and on
properties of the operation, such as matrix size and filter dimen-
sions. Depending on the dynamic requirements of the system (e.g.,
high throughput, low energy), runtime parameters of the operation
(e.g., number of objects, image size), and availability of DSAs, the
programmer (or system scheduler) may choose to map different op-
erations to different DSAs throughout execution of an application.

An emerging architectural feature of such heterogeneous SoCs is
a shared system memory that all DSAs and the CPU can directly ac-
cess and utilize. While this design choice is primarily motivated by
the goal of reducing chip area and production costs, it also helps in

eliminating additional data transfer management overhead between
the CPU and private device memory [4]. Having shared memory
directly accessible by every DSA in the system enables assigning
OPs in a workload to the DSAs more flexibly. This flexibility also
enables collaborative execution in shared-memory heterogeneous
system architectures (SM-HSA), where OPs in a workload can be
executed on different DSAs [9] to exploit the varying benefits (i.e.,
energy, throughput, latency, etc.) that different types of DSAs op-
timally provide—e.g., a convolution operation can be accelerated
by a graphical processing unit (GPU) for high performance, or by
a deep learning accelerator (DLA) for better energy efficiency. In
such SM-HSAs, optimal utilization of the system resources heavily
relies on carefully assigning the OPs to the available DSAs based on
the target performance and power goals of a given scenario [17].

Collaborative execution of popular workloads, such as neural
network inference, on different types of DSAs is a relatively new
and unexplored scheme which has the potential to provide unique
benefits for budgeted execution scenarios. To demonstrate the feasi-
bility of collaborative execution for achieving different performance
and energy goals on a heterogeneous platform, we conduct an ex-
ploratory experiment, which is shown in Fig. 1. In this experiment,
we map the layers of the VGG-19 [23] network to the GPU and the
DLA of NVIDIA’s Xavier AGX SoC in three different ways. The
left-most and right-most columns in the figure show where all lay-
ers are executed, either on the GPU or the DLA respectively. The
middle column illustrates a collaborative execution where the first
𝑛 layers are run on the GPU, and the remaining𝑚 layers on the
DLA. The total execution time and energy consumed is given under
each column. Experimental results show that running all layers on
the GPU results in the fastest execution time, whereas running all
layers on the DLA is the most energy-efficient. On the other hand,
the collaborative execution scheme shown in the middle results in
a trade-off between execution time and energy, as more layers of
the network are executed on the DLA.

A hybrid (i.e., GPU+DLA) execution scheme could be more feasi-
ble in real-life scenarios, when there is an energy constraint in the
system. For example, when an autonomous aerial drone is running
low on battery, scheduling of the NN layers to DSAs can be adjusted
at the expense of a higher execution time (i.e., latency), hence re-
sulting in a lower images/second detected by the NN. In the Fig. 1
example, if the remaining energy budget per image detected is less
than 175 Joules, (total energy/image needed for GPU-only execu-
tion), but more than 140 Joules, rather than running the entire NN
on the DLA, choosing the GPU+DLA hybrid schedule in the middle
will result in a more feasible operation. The drone will still be able
to complete its flight, but will be more responsive to the surrounding
objects, thanks to the lower latency (12.5 ms per image) achieved by
a GPU+DLA hybrid execution against a DLA-only execution (18.5
ms per image).

A limited number of studies [5, 11] explore the benefits of using
different types of DSAs collaboratively for the same application.
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Figure 1: Simplified layer mappings for VGG-19 when executed with
TensorRT on Xavier AGX: Leftmost and rightmost control flow
graphs (CFG) show the traditional methods of executing the NN
on a single type of DSA. The multi-accelerator execution scheme,
shown in the middle, employs switches the execution flow from
produces a diversity on latency and energy trade-offs by considering
transition overhead.

While most [6, 13, 16, 21, 27, 28] focus on improving the total
throughput by using multiple DSAs concurrently, only a few have
investigated the performance-energy trade-off in limited aspects.
To the best of our knowledge, none of the existing studies are able
to address all of the following challenges altogether for multi-DSA
collaborative execution:
• Holistic modeling of multi-accelerator execution that takes both

the execution and data-transfer costs between different type of
DSAs into consideration.

• Tunable objective for power consumption which can be targeted
while finding schedules with optimal execution time.

• Generalized layer-wise characterization methodology for finding
performance and energy costs of neural network inference on
multi-DSA systems.
In this study, we propose an energy-aware multi-DSA execution

scheme for NN inference on heterogeneous SoCs. Our proposed
scheme, AxoNN, uniquely enables setting an energy consumption
target (ECT) and finds a NN-layer-to-DSA mapping that minimizes
the total execution time under a given ECT. AxoNN utilizes a novel
inter-accelerator transition model to integrate the penalty of switch-
ing between DSAs into the cost function. Our scheme characterizes
each layer in the network for each target DSA, and explores mul-
tiple transitions between layers to find schedules that satisfy the
given ECT. We represent the scheduling problem as a constrained-
objective optimization problem.

Our paper makes the following contributions:
• We present AxoNN, a multi-accelerator execution scheme for

diversely heterogeneous SoCs, which finds schedules with near-
minimal execution time for a given ECT.

• We propose a novel, empirical model-creation technique to rep-
resent the cost of inter-DSA transitions on a shared-memory
heterogeneous SoC.

• We build cost models for estimating energy and execution times
which uniquely take transition times and hardware-pipelined
accelerator architectures into account.

• We evaluate AxoNN on the NVIDIA Xavier AGX SoC by using
its embedded Volta GPU and DLA. Our results show that our
methodology can find near-optimal schedules with one or two
inter-DSA transitions within up to 98% accuracy while staying
under the given ECT.

2 Multi-accelerator NN Inference on Diversely
Heterogeneous SoCs

As demonstrated in Fig. 1, using a single type of DSA for the
entire workload does not provide enough room to explore vari-
ous latency/energy trade-offs. In NN inference, finding the desired
trade-off requires a careful distribution of layers onto accelerators.
However, using multiple DSAs to maximize the system’s utilization
while staying under resource constraints, such as ECT, introduces
a number of challenges and considerations.

2.1 Challenges
Lack of flexibility in layer-to-DSA assignment: Each type of DSA

has a different set of restrictions in terms of capabilities for running
different OPs. For example, even though layer activation functions
are considered as separate layers on TensorRT, NVIDIA GPUs do
not allow the TensorRT scheduler to assign activation functions to
a DSA other than the one that executed the preceding convolution
OP. NVIDIA’s DLA has additional restrictions on layer parameters
and batch sizes. Moreover, TensorRT does not allow to transitions
from DLA to GPU after certain layers (e.g., Eltwise layer). Such
limitations force some layers to fall back to the GPU, even though
they are assigned to execute on the DLA. Therefore, the availability
of potential inter-DSA transition points is restricted, and depends
on the NN and the DSAs to which the layers before and after the
transition are assigned.

Grouping layers: Operator fusion has become a commonly ap-
plied optimization by popular frameworks, such as TensorRT [20]
and TVM [3], that minimizes the cache misses between OPs. Break-
ing potentially-fusible operations will increase execution time and,
as a result, energy usage.

Profiling: Some highly-specialized accelerators such as DLAs
run the consecutively-assigned layers as a single black box and do
not allow internal profiling of execution times layer-by-layer. This
limitation makes empirical modeling more challenging, since it
presents an obstacle to fine-grained performance characterization.

2.2 Considerations
Inter-DSA transition overhead: On shared-memory SoCs, caches

are often private to DSAs, due to complexity of cache coherency
across diversely heterogeneous processing units. When the execu-
tion flow switches from one DSA to another on a shared memory
system, the transient data present in private caches or buffers of
DSAs needs to be written back to the shared memory. Such ad-
ditional memory read/write operations need to be considered as
overhead, and added to the total execution time. The size of the
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Figure 2: A simplified internal block diagram for NVDLA.

memory pages being written or read is the primary factor deter-
mining the magnitude of this transition overhead. In most NNs,
the size of the input and output data that each layer consumes and
produces often changes after each layer. Moreover, the internal
memory hierarchy of each type of DSA affects the transition over-
head differently, even though the amount of data being read or
written by two DSAs is the same [11]. Therefore, modeling the cost
of inter-DSA transitions requires careful consideration of the data
size, layer type and the DSA where the transition is occurring.

Execution time characterization: While the execution time of a
specific NN layer on a given DSA primarily depends on the layer
type and the input data size, the location of the data before the
layer is also an important factor. Therefore, we model layer ex-
ecution time and inter-DSA transition time separately. The cold
cache misses issued by DSAs as they begin executing a layer after a
transition requires a warm-up period for layer-by-layer characteri-
zation. Another important factor affecting the execution time is the
existence of internal hardware (HW) pipelines. As shown in Figure
2, NVIDIA’s DLA architecture embeds a pipeline of internal engines
for common layers, such as convolution, activation, and pooling, in
the order that these layers often appear in NNs. The data between
the engines are often forwarded with direct data buses and separate
characterization of such layers may result in incorrectly estimated
layer execution times by our empirical model. For example, since
the pooling layer reduces the amount of data being passed to the
next layer, measuring the execution time of the convolution and
activation layers separately from the pooling layer will result in a
longer execution time than the case where these three layers are
profiled together. Therefore, layer-characterization needs to take
such HW behavior into account for HW-pipelined DSAs.

3 Modeling Methodology
Taking into account the challenges and constraints, this section

explains the methodology we utilized to build our empirical model.
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Figure 3: Empirical models for Convolution and Pooling layers’ out-
transition times after the layers are run on GPU and DLA for differ-
ent tensor sizes.

3.1 Modeling inter-accelerator transition cost
The location of the transition point must be explored because of

threemajor criteria: (1) the size of data needed to perform read/write
operations; (2) DSA mechanisms causing different behaviors for
transition operations; and (3) problematic compiler and hardware
level optimizations. For the first criterion, the transition overhead
will increase as the size of the data increases. The X-axes in Fig.
3.a and 3.b represents the tensor sizes, i.e. the size of the output
produced after convolution/pooling layers. The Y-axis represents
the transition cost in milliseconds if any transition is applied after
the convolution/pooling layers. For example, performing the tran-
sition operation for the convolution layer with a data size of 3MB
can result in 14x more time overhead compared to a data size of
100KB on the DLA. Thus, it is clear that the transition overhead
decreases as the data movement decreases on both of the devices
in our experiments. Another significant factor in determining DLA
behavior for different sizes is that DLA has a second private buffer
specifically for convolution operations. Since the buffer has a lim-
ited size, larger data necessitates data movement from afar rather
than a private buffer.

3.2 Energy and performance characterization
Based on architectural restrictions, we check whether a layer

can run on all DSAs, or can be marked as a transition layer by using
canRunOnDLA andmarkOutput TensorRT API calls. For example, a
ReLU activation layer cannot run by itself on the DLA, but merging
a ReLU activation layer with a convolution layer enables running
both of them on the DLA.

Designing and measuring execution time and energy consump-
tion is non-trivial because of the challenges explained in Section 2.
We develop a macrobenchmark in order to analyze the behavioral
differences of the DSAs for OPs, and measure the NN’s resource
consumption layer-by-layer. In Figure 4(a-b), we measure execution
time and energy consumption of each layer on VGG19 by using
GPU and DLA separately. The left vertical axis shows the execu-
tion time, whereas the right vertical axis represents the energy
consumption. Convolution OPs on GPU are 3x to 4.5x faster than
on DLA, whereas pooling on GPU is 3x to 7x faster than on DLA,
depending on the data size.

4 Multi-accelerator Scheduling via
Constraint-based Optimization

This section details how we build our cost functions and encode
scheduling as a constraint-based optimization problem. First, we
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Table 1: The notations used in this section.

Notation Explanation
𝐿𝑖 𝑖th layer on a given layer set 𝐿, 0 ≤ 𝑖 ≤ len(𝐿)
𝑃 𝑗 𝑗 th processor on a given processor set 𝑃 , 0 ≤ 𝑖 ≤

len(𝑃 )
𝑇𝑅𝑖 Boolean variable set if a transition is occurred after 𝐿𝑖 ,

0<i<𝑙𝑒𝑛 (𝐿)
𝜏 (𝑖, 𝑗,𝑂𝑈𝑇 ) The transition cost of layer 𝐿𝑖 assigned to processor 𝑃 𝑗

as output
𝜏 (𝑖, 𝑗, 𝐼𝑁 ) Transition cost of layer 𝐿𝑖 assigned to processor 𝑃 𝑗 as

input
𝑒 (𝑖, 𝑗) Energy consumption of layer 𝐿𝑖 on processor 𝑃 𝑗

𝑡 (𝑖, 𝑗) Execution time of layer 𝐿𝑖 on processor 𝑃 𝑗

𝐸𝐶𝑇 Energy consumption target
S(𝐿𝑖 ) Scheduling set of Layers, 0 < i < len(L)

𝑇 (𝐿, 𝑃, 𝑆,𝑇𝑅) Total time by a given layer set L, processor P, and sched-
ule S

𝐸 (𝐿, 𝑃, 𝑆,𝑇𝑅) Energy consumption by a given set of layer L, processor
P, and schedule S

𝑈 (𝐿𝑖) The sub-unit executing the layer
𝛾 (𝐿𝑖 , 𝑠 (𝐿𝑖 )) Amount of time 𝐿𝑖 saves by pipelining in its input

NumTransition Maximum amount of transition allowed by user

formulate the total execution time using empirical values found for
transition and layer-wise execution times in Section 3. Then we
formulate an optimization problem that minimizes total execution
time for a given energy constraint (i.e., ECT).

Table 1 lists the components needed to formulate our optimiza-
tion problem. Layer set 𝐿 is a specific parameter for a given network,
as a combination of layers 𝐿𝑖 with various sizes and activation func-
tions. Processor set 𝑃 includes available DSAs on the architecture.
Each processor 𝑃𝑖 has specialized capabilities to handle particular
tasks with different time and energy results. Moreover, transition
costs of layers 𝜏 (𝑖, 𝑗,𝑂𝑈𝑇 ) from processor 𝑃𝑖 to processor 𝑃 𝑗 as
outputs are observed when the transient data belonging to the
previous layer are flushed back to the main system memory. The
transition cost of layers 𝜏 (𝑖, 𝑗, 𝐼𝑁 ) as an input to the new processor
𝑃 𝑗 is observed since the cold cache misses caused by the initial
memory instructions executed by the GPU result in an implicit
warm-up period. All of these values are obtained via offline profiler
IProfiler, using an API call on TensorRT, to obtain execution time
𝑡 (𝑖, 𝑗) and energy consumption 𝑒 (𝑖, 𝑗) of layer 𝐿𝑖 on processor 𝑃 𝑗 .

Since each layer can be mapped into a different processor, the
layer-to-processor schedule for a neural network is defined as 𝑆 (𝐿𝑖 ),
as shown in Equation 1:

𝑆 (𝐿𝑖 ) = 𝑃 𝑗 𝑤ℎ𝑒𝑟𝑒 0 < 𝑖 < 𝑚 & 0 < 𝑗 < 𝑛 (1)

Since broken fusion operations and pipelined operations will cost
extra overhead, we consider another feature in our metholodogy,
pipeline( ) in Eq. 2. If the schedule does not prevent any OP from
being pipelined, there will be no effect on the time and energy
parameters. However, if the DSA used by the previous layer is not
the same DSA on the current layer, it can severely affect execution
time and energy results.

𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 (𝐿𝑖 , 𝑆 (𝐿𝑖 )) =
{
0 if𝑈 (𝐿𝑖 ) = 𝑈 (𝐿𝑖 − 1)
𝛾 (𝐿𝑖 , 𝑠 (𝐿𝑖 )) if𝑈 (𝐿𝑖 ) ≠ 𝑈 (𝐿𝑖 − 1)

(2)

After obtaining the related time parameters, the total execution
time for a neural network 𝑇 (𝐿, 𝑃, 𝑆 (𝐿 → 𝑃,𝑇𝑅) can be calculated
via four different parameters, as shown in Eq. 3. Each layer 𝐿𝑖 has
a characteristic execution time on processor 𝑃 𝑗 , represented by a
scheduling parameter 𝑠 (𝐿𝑖 ). The transition cost of each layer to
a different processor as an input, 𝜏 (𝐿𝑖 , 𝑠 (𝐿𝑖 ),𝑂𝑈𝑇 ), is added. The
transition cost is added to the total execution only if the result of
layer 𝐿𝑖 transitions to a new processor, represented by 𝑇𝑅𝑖 . The
transition cost of each layer as an input to a new processor is
also added to the total execution time if the data for layer 𝐿𝑖 is
transferred from a different processor.

𝑇 (𝐿, 𝑃, 𝑆 (𝐿 → 𝑃),𝑇𝑅) =
𝑙𝑒𝑛 (𝐿)∑︁
𝑖=0

(𝑡 (𝐿𝑖 , 𝑠 (𝐿𝑖 )) +

(𝑇𝑅𝑖 × 𝜏 (𝐿𝑖 , 𝑠 (𝐿𝑖 ),𝑂𝑈𝑇 )) + (𝑇𝑅𝑖 × 𝜏 (𝐿𝑖+1, 𝑠 (𝐿𝑖+1), 𝐼𝑁 )) +
(𝑇𝑅𝑖 × 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 (𝐿𝑖 , 𝑆 (𝐿𝑖 ))))

(3)

𝑇𝑅𝑖 =

{
1 if 𝑆 (𝑖) ≠ 𝑆 (𝑖 + 1)
0 if 𝑆 (𝑖) = 𝑆 (𝑖 + 1)

(4)

𝑁𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 =

𝑙𝑒𝑛 (𝐿)∑︁
𝑖=0

𝑇𝑅𝑖 (5)

The energy consumption during an execution of a network
𝐸 (𝐿, 𝑃, 𝑆 (𝐿 → 𝑃,𝑇𝑅) can be calculated via three different parame-
ters, as shown in Eq. (6). The summation of energy consumption
results of each layer 𝐿𝑖 on a processor 𝑃 𝑗 with each possible sched-
ule 𝑆𝑖 represents the total energy consumption of a neural network
inference execution, as follows:

𝐸 (𝐿, 𝑃, 𝑆 (𝐿 → 𝑃),𝑇𝑅) =
𝑙𝑒𝑛 (𝐿)∑︁
𝑖=0

𝑒 (𝐿𝑖 , 𝑠 (𝐿𝑖 )) +

(𝑇𝑅𝑖 × 𝑒 (𝐿𝑖 , 𝑠 (𝐿𝑖 ),𝑂𝑈𝑇 )) + (𝑇𝑅𝑖 × 𝑒 (𝐿𝑖+1, 𝑠 (𝐿𝑖+1), 𝐼𝑁 ))
(6)

Total energy consumption is calculated on Eq. (6) via summation
of each layer 𝐿𝑖 executed on 𝑃𝑖 . This function is used in Equation 1
to satisfy the energy constraint.

Our aim is to minimize the execution time of a NN inference for
a given set of layers and processors, with each possible mapping of
layers to the processors, and an energy constraint 𝐸𝐶𝑇 . Thus, we
define our objective function and the primary constraint as follows:

min 𝑇 (𝐿, 𝑃, 𝑆 (𝐿 → 𝑃))
s.t. 𝐸 (𝐿, 𝑃, 𝑆 (𝐿 → 𝑃)) < 𝐸𝐶𝑇 (7)

5 Evaluation
The constraints described in Section 4 can be handled with an

off-the-shelf constraint solver. In this section, we report results
obtained from solutions to the Section 4 constraints.

5.1 Experimental setup
In this study, we use Nvidia’s Jetson Xavier AGX SoC since it

embeds one performance-efficient (i.e., GPU) and energy-efficient
(i.e., DLA) DSAs, together with access to the same shared DRAM
memory. The software versions utilized on our experimental plat-
form are Ubuntu OS 18.04, Cuda 10.2, TensorRT 7.1.3, CuDNN 8.0.0,
ONNX 1.6.0, and TensorFlow 2.3.1. We use the TensorRT engine
to optimize the pre-trained models collected from several neural
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Figure 5: A transition is performed on the layer at the X-axis from
GPU to DLA. As the number of layers increases on DLA, the execu-
tion time increases. Because the pipeline is broken, the transitions
after pooling layers have negative values, as explained in Section 2.1

network models, VGG16/19 [23], Resnet18/50 [7], Alexnet [15], and
GoogleNet[24]. The reason we focus on these networks is that all
layers can be scheduled on the GPU and DLA. This allows us to
flexibly explore all possible layer-to-DSA assignments, without Ten-
sorRT engine falling back to GPUs on DLA-assigned layers; hence
we avoid obligatory layer transitions between the GPU and DLA.
We also solve the equations shown in Section 4 with the Z3 SMT
solver, which efficiently determines satisfiability of logical/numeric
constraints.

5.2 Experimental Results
We designed an experiment to observe the effect of transitions

after different types of layers on a NN. Since we mainly utilize two
types of DSAs in our experiments (GPU and DLA), we first assigned
all layers to GPU, and measure the execution time on the PU. Then,
we repeated the experiment by applying a transition from GPU to
DLA after the each layer on the neural network architecture and
measured time on the DSAs. In order to analyze the effect of each
transition, we subtracted the time for each transition point from the
previous transition experiment, and plotted the results in Figure
5. In order words, for each 𝐿𝑖 assigned to a different device, we
calculated the execution time difference according to Equation 3.
Since the layer is running on a slower device, the difference in terms
of time is generally higher than 0 in Figure 5. The results of the
execution time characterization for layers in Figure 4(a) supports
the idea behind the results. However, there are some regions in
Figure 5 where the results are less than 0. Those transition points
always correspond to transitions after pooling layers. However, the
effect of broken pipelining exceed the slowdown of layer operation
on DLA, so the total execution time decreases.

5.3 Feasibility Analysis of Our Model
We test the equations on Section 4 by using Z3 with 6 differ-

ent NN models. We define our objective functions and the main
constraint on the solver as in Equation 7. The main idea here is to
restrict the energy with an upper limit by minimizing the execution
time of NN inference. We provide the profiling results of layer time,
energy, and transition characterization as inputs to the solver, and
obtain the optimal energy and time results from the solver. In Figure
6, our ECT constraint is set by a range from minimum amount of
energy to maximum amount of energy by gradually decreasing
the ECT constraint on the X-axis. Depending on the ECT value,
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Figure 6: The comparison between the energy and execution times
of the schedules estimated by AxoNN versus the actual energy and
execution times measured for the corresponding actual runs. For
each network we have tried varying ranges of ECT that is between
the energy consumption of all-DLA and all-GPU execution.

Z3 finds the optimum transition point, in order to minimize the
execution time of NN inference. The red dot values on each figure
show the results of energy estimation we obtain from the solver,
whereas the green dot values show the results of time estimation
we obtain from the solver. On the left and right vertical axes, we
represent energy consumption and execution time respectively,
corresponding to the ECT. The red dot values on each figure show
the results of energy estimation we obtain from the solver, whereas
the green dot values show the results of execution time estimation
we obtain from the solver. According to the plot results, we perform
an experiment by applying the scheduling results that the solver
finds. The experimental results are represented by the red line. The
experiments show that our model provides up to 97.1% accuracy on
time estimation, and up to 98.2% accuracy on energy estimation.

5.4 Multi-Transition and Scheduling Overhead
While each transition between DSAs costs extra time in the

schedule, the most feasible execution may still include multiple
transitions, i.e., going back and forth between DSAs. Therefore,
we run our solver by allowing more than a single transition, by
increasing the value of the NumTransition variable (Eq. 5) to 3.
Table 2 lists the number of inter-DSA transitions that the near-
optimal schedules include. The overhead of scheduling (i.e., solver
execution time) is under 5 seconds when NumTransition is set to 1,
and under 1 minute when NumTransition is set to 3.

6 Additional Related Work
GPipe [10] and PipeDream [18] split tasks between multi-DSAs

by utilizing pipelines and considering transition time between accel-
erators for deep learning (DL) training. HetPipe [21] considers the
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Table 2: The number of inter-DSA transitions that near-optimal
schedules include when NumTransition variable is set to 3.

Model 1 Transition 2 Transitions 3 Transitions
GoogleNet 19 3 0
VGG-19 16 4 2
VGG-16 18 4 0
Alexnet 10 2 0
ResNet50 8 4 0
ResNet18 9 3 0

first step of heterogeneity, and sets up multi-GPU clusters to apply
the pipeline parallelism idea by maximizing utilization. However,
none of the aforementioned works takes energy into account.

HPC-DAG [8] explores the design space for latency-sensitive ap-
plication modeling with a heuristic approach. Narayanan et al. [19]
propose round-robin scheduling for a target-latency deadline for
DL workloads. Shamsa et al. [22] prioritize resource management
over goals by considering dynamic changes. HetSched [1] optimizes
a CPS’s mission time by exploiting the heterogeneity on SoCs and
the application’s characterization. These studies do not consider
energy as a target or metric.

Pipelining in DL inference [26] is applied by distributing layers
between CPU and GPU in order to maximize throughput of the
system and synchronous data via cache-coherent interconnects.
However, their methodology is not applicable to asynchronous
data transfers. Kang et al. [12] optimize a single DL application’s
response time via the dynamic voltage and frequency scaling (DVFS)
technique by finding the Pareto-optimal scheduling. Jeong et al. [11]
offer a parallelization methodology for DL inference workloads
to maximize throughput by leveraging TensorRT’s GPU and DLA.
However, none of these works considers using multiple accelerators
for DL tasks by considering energy and minimum latency.

A similar methodology is presented by MEPHESTO [17], which
first characterizes the workload and DSAs, then designs the energy-
performance trade-off by collocating kernels and considering the
memory contention on heterogeneous systems. However, this study
does not take the dependencies between OPs into account, and is
therefore not suitable for NN inference. NeuroPipe [14] also accel-
erates in an energy-efficient way using heterogeneous processing
units, by modifying the energy restrictions on the system. Barik
et al. [2] propose a mapping algorithm between CPU and GPU
by characterizing the power consumption of data-parallel specific
workloads. Tzilis et al. [25] propose an online profiling model for
estimating power consumption and performance under DVFS con-
figuration for a given application. The aforementioned works do
not consider challenges on DL applications.

To the best of our knowledge, our work is the first to apply layer-wise
mapping on heterogeneous accelerators by considering both latency
and energy.

7 Conclusion
This study presents AxoNN , a multi-accelerator scheme for het-

erogeneous SoCs.We explore the factors affecting the energy-aware
scheduling of NN workloads onto DSAs. We analyze the transition
costs between DSAs in a shared-memory system and characterize
the execution time and energy consumption of different NN work-
loads. We build a scheduling model in order to find the minimum

execution time for different energy targets. We test our method-
ology with 6 different networks, and test our results with the Z3
SMT Solver, obtaining up to 98% prediction accuracy.
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